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Abstract. We observe that the appearance of two transport relaxation times in the various
transport coefficients of cuprate metals may be understood in terms of scattering processes
that discriminate between currents that are even, or odd under the charge-conjugation operator.
We develop a transport equation that illustrates these ideas and discuss its experimental and
theoretical consequences.

There are and can exist but two ways of investigating and discovering truth. The one hurries
on rapidly from the senses and particulars to the most general axioms, and from them,
as principles and their supposed indisputable truth, derives and discovers the intermediate
axioms. This way is now in fashion.

The other constructs its axioms from the senses and particulars, by ascending continually
and gradually, till it finally arrives at the most general axioms. This is the true, but as yet
untried way.’

Francis Bacon in ‘Novum Organum’ 1620.

1. Introduction

One of the striking features of the cuprate metals is the appearance of two, qualitatively
different transport relaxation times. Resistivity and optical measurements indicate that
electric currents relax at a rate which grows linearly [1] with temperature:

0tr ∼ ηT (η ∼ 2). (1)

By contrast, the ‘Hall relaxation rate’ obtained from the Hall angle [2]θH = ωc/0H ,

where ωc = eH/m is the cyclotron frequency, shows a qualitatively different quadratic
temperature dependence:

0H = T 2

W
+ nib. (2)

The quadratic form of0H is robust against a finite concentration of impuritiesni . Estimates
of W based on d.c. measurements by Onget al, give W ∼ 1000 K, but more recent direct
measurements ofτH from the a.c. Hall angle suggest that it may be significantly smaller.
These features led Anderson, some five years ago, to conjecture that there are two transport
relaxation times in the cuprate metals which independently govern the decay of electrical
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and Hall currents [3, 4]. Although subsequent experimental results have tended to reinforce
this phenomenological interpretation, Anderson’s proposal remains highly controversial.

This article discusses the two-relaxation-time conjecture. We sharpen the definition of
the Hall and electric transport relaxation rate and show that a sum rule for the Hall angle
means that Anderson’s interpretation can be made without reference to the microscopic
physics. We explain why the robustness of the quadratic temperature dependence to changes
in hole and impurity concentrations makes it very difficult to embrace the various alternative
interpretations of the magnetotransport: the quadratic temperature dependence of0H appears
there as a fortuitous cancellation of independent scattering processes.

Motivated by these considerations, we then pursue the consequences of the Anderson
conjecture, bringing symmetry considerations into play [5]. We identify charge conjugation
as the key symmetry distinction between the electric and the Hall currents, and argue that in
the cuprates there must be scattering processes involving the emission of charge that cause
degenerate electron and hole states to admix in the normal state. These ideas are illustrated
by a phenomenological transport equation. In the final section, we discuss the challenge of
isolating the physics that simultaneously accounts for both the marginal scattering of the
electrons and the delineation of electric and Hall currents.

2. Review of experimental results

The inverse-square Hall angleθH ∼ T −2 is a robust feature of the cuprate metals which
governs both the Hall conductivity and the magnetoresistance. Remarkably, the two
relaxation times entermultiplicatively into the transport coefficients. The Hall conductivity
σxy = σxxθH has the form

σxy ∝ H

0tr0H

(∼ T −3) (3)

whereH is the external field strength. In optimally doped cuprates, the magnetoconductivity
1σxx depends quadratically on the Hall angle [6]:

1σxx ∝ H 2

0tr0
2
H

(∼ T −5). (4)

In a normal metal there isone transport relaxation rate0tr(p) at each point in
momentum space.0tr(p) can have strong momentum dependence, but since transport is
a zero-momentum probe, momentum conservationprevents a multiplicative combination
of scattering rates from different pointson the Fermi surface. For example, the Hall
conductivity of a Fermi liquid is given by the second moment of the transport relaxation
time, around the Fermi surface:

σxy ∝
∫

dpz

∫
FS

v × dv

(0tr(p))2
(5)

where FS denotes a line integral around the Fermi surface in the plane perpendicular to
the field,v is the Fermi velocity and dv = dp · ∇v is the change inv along the line [7].
Momentum conservation obliges us to interpret a multiplicative combination of0tr and0H

in terms of two relaxation times at the same point in momentum space.
A clear manifestation of these two relaxation times is the violation of Kohler’s rule.

In conventional metals, where0H ∼ 0tr, the transverse magnetoresistance obeys Kohler’s
rule δρ/ρ ∝ (H/ρ)2 [8]. Kohler’s rule is violated in the optimally doped and underdoped
cuprate metals [6]. Instead, the appearance of the same Hall angle in the magnetoresistance
means that a modified ruleδρ/ρ ∝ (H/0H )2 ∝ (HRH/ρ)2 is approximately satisfied [9].
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Recent studies show that when the cuprate metals are overdoped, Kohler’s rule behaviour
is restored [10].

To pursue this discussion, we need a clear idea of what we mean by the Hall and electric
current relaxation rates. Electric current is the response to an applied electric field:

jx(t) =
∫ t

−∞
σxx(t − t ′)Ex(t

′) dt ′ (6)

whereσxx(t − t ′) is the Fourier transform of the frequency-dependent conductivity. When
we speak of a relaxation rate for the electrical current, we mean that the current response
function σxx(t − t ′) has an exponential form:

σxx(t − t ′) = ne2

m
e−0tr(t−t ′). (7)

This is the origin of the Drude peak in the optical conductivity. Hall current is the retarded
transverse response to to an input current (figure 1) as follows:

jx(t) =
∫ t

−∞
2H(t − t ′)jy(t

′) dt ′ (8)

where 2H(t) is the Fourier transform of the frequency-dependent Hall angleθH (ω) =
σxy(ω)/σxx(ω). The Hall relaxation rate refers to the decay of the Hall current in response
to a sudden pulse of current:

2H(t − t ′) = ωce−0H (t−t ′) (t > t ′). (9)

These are the operational definitions of0tr and0H .

t

jy

xj

yj

xj

t

Figure 1. Illustrating the Hall responsejx(t) = j02H (t) to an input current pulsejy(t) =
j0 δ(t).

Recent experimental advances make it possible to directly probe this Hall decay rate
using optical transmission experiments. Such measurements by Kaplanet al [11] show that
the frequency-dependent Hall angle can be fitted to a single Lorentzian form:

θH (ω) =
[

ωc

0H − iω

]
(10)
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where0H is smaller than the transport relaxation rate. Measurements on YBCO films at
100 K indicate that0H ∼ 1

40tr at this temperature. At present, no detailed measurements
of the temperature dependence of0H are available.

In this connection however, there is an important optical sum rule [12]:

2
∫ ∞

0

dω

π
θH (ω) = ωc. (11)

This is the transverse counterpart of the forward or ‘f-sum’ rule. The transverse or ‘t-sum
rule’ is exact, if all frequencies are included. For a single, split-off band, there is an effective
sum rule with a cyclotron frequency

ωc = 2eH
∑

det(m−1
p )np

/ ∑
Tr(m−1

p )np (12)

which is determined by a sum over the entire band. This quantity is expected to be almost
temperature independent. Sinceθd.c.

H ∝ 1/T 2, the width of the Hall spectral functionθH (ω)

must grow quadratically with temperature to preserve the sum rule. Measurements reported
at this meeting [13] seem to provide some of the first direct support for this conclusion. It
should be clear from this discussion that the two-relaxation-time interpretation of the cuprate
transport can be made purely on the basis of the sum rule, and experimental observation.

Anderson’s interpretation of the Hall mobility in terms of two relaxation times
nevertheless poses a serious paradox for the microscopic physics. The problem is that in
a conventional metal there is nomicroscopicdistinction between a ‘Hall’ and an ‘electric’
current. Electrons respond to the total Lorentz electric field

E = E + v × H (13)

where v is their group velocity. Electric and magnetic fields always enter the transport
equations in this combination, so electrons on the Fermi surface cannot tell external electric
and internal Lorentz forces apart. Anderson has suggested that one way to produce two such
autonomous scattering rates is to develop spin–charge decoupling. In his picture, theT 2

scattering rate is associated with spin excitations, or ‘spinons’, whilst the linear relaxation
rate is associated with charge excitations, or ‘holons’. Anderson suggests that the motion
of spinons produces a charge backflow which is responsible for the Hall current. What
is lacking is an explanation of why this charge backflow only carries a Hall current. To
pursue the idea of two transport relaxation times we need to find a symmetry reason for
this selectivity.

Before taking this path it is instructive to consider the alternatives. Two classes of
proposal have been made:

• strong momentum-dependent scattering [14–16]; and
• skew scattering [17].

The first scenario [14–16] envisions two distinct regions of the Fermi surface: a ‘hot spot’
where the scattering rate is a linear function of temperature,0hot ∝ T , and a second ‘cold’
region of the Fermi surface with a weaker temperature dependence of the transport relaxation
rate 0cold. This theory presumes that the ‘hot spot’ dominates the electrical conductivity,
whereas the cold region, with a higher Fermi surface curvature, sets the Hall conductivity,
so that

σxx ∝ 1

0hot

σxy ∝ H

(0cold)2
.

(14)
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In this interpretation, the quadratic temperature dependence of the Hall relaxation rate is
not fundamental, but appears as a consequence of a cancellation between relaxation rates at
different parts of the Fermi surface:

0H ∝ 02
cold

0hot
(‘hot-spot scenario’). (15)

If 0cold ∝ T 1.5, then0H ∝ T 2.
The ‘skew scattering’ interpretation of the anomalous Hall angle presumes the presence

of chiral current fluctuations which, through their coupling to the electrons, cause a
field-dependent ‘skew scattering’ component to develop in the inelastic scattering. This
component is required to have a singular dependence on temperature of the following form:

0skew ∝ H

T
. (16)

The skew scattering renormalizes the effective cyclotron frequency without changing the
current relaxation rates, changingωc → ω∗

c = ωc + 0skew, so for an almost compensated
bandω∗

c ∼ 0skew, giving that

0H(T ) ∝ 0tr

0skew
(skew scattering) (17)

is a quadratic function of temperature.
These alternate scenarios face a serious common difficulty. Each case requires

the presence of a fortuitous cancellation of two independent scattering processes. The
temperature dependences0hot ∝ T 1.5 and0skew ∝ 1/T are actually more complicated than
the simple quadratic relaxation rate that they are supposed to give rise to. Furthermore
in these theories, if the linear transport relaxation rate is substantially modified by the
addition of impurities or changes in the hole concentration, then the quadratic temperature
dependence of0H is lost. This is not what is seen: changes in impurity concentration or
oxygen doping which eliminate the linear temperature dependence of the resistivity do not
change the quadratic temperature dependence of0H . These features all tend to suggest that
0H is a truly autonomous scattering rate, not a fortuitous cancellation of other scattering
processes.

So to conclude this section, rather general considerations of an experimental and
theoretical nature appear to force us to return to Anderson’s original conjecture and to
ask what general constraints it places on the microscopic physics. This is the subject of the
remainder of this paper.

3. Symmetries of the Fermi surface

What type of scattering event can lead to different Hall and electric relaxation rates?
Fundamentally, electrical and Hall currents differ in the number of photons absorbed. In
linear response theory, electric current involves the absorption of a single photon with a
finite frequency. The Hall current is generated by a two-photon absorption process: the
first photon excites an electron–hole pair about the Fermi surface, the second transfers
momentum, causing the electron and hole in the pair to precess around the Fermi surface.
The diagrammatic expression of the electric and Hall conductivities involves the bubble and
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Figure 2. (a) A ‘bubble diagram’ entering the conductivity. (b) ‘Triangle diagrams’ entering
into the Hall conductivity. Open circles denote the effective-mass tensor which appears when
the derivative of the velocity operator with respect to the external momentum is taken, to extract
the magnetic field dependence (see appendix A). Filled circles denote the velocity operator.

triangle diagrams shown in figure 2†. Heuristically

σxx(ω) ∼ bubble diagram(ω)

−iω

σxy(ω) ∼ 1

ω

[
triangle diagram(ω)

]
.

(18)

Each external leg of the diagram carries the same momentum, and thus the relaxation times
which enter multiplicatively into the Hall conductivity must be derived from thesame point
in momentum space. How then can a two-photon process involve the product of two
qualitatively different relaxation time-scales?

The shrewd diagrammatician will recognize that, in general, we have to include vertex
corrections and that if these are important a simple relaxation time discussion of the problem
may not be valid. Recall, however, that the qualitative simplicity of the experiment suggests
that the underlying physicsdoeshave some kind of simple relaxation time interpretation,
albeit not the one that we are familiar with. In conventional metals the effect of vertex
corrections is to replace the electron inelastic scattering rate by the appropriate transport
relaxation rate:

0(ω, p)
vertex eff.−−−−−−−−−→ 0tr(ω, p) (simple metal). (19)

Experiments motivate us to seek an explanation where the effect of the vertices is to produce
two relaxation times on the external legs:

0(ω, p)
vertex eff.−−−−−−−−−→

{
0tr(ω, p)

0H(ω, p).
(20)

† For a discussion of the calculation of the Hall conductivity see appendix A and reference [18].
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We seek an explanation where the one-photon absorption process involves the fast relaxation
rate0tr, but the two-photon absorption process involves a product of both relaxation times.

There is a vital distinction between the electrical and Hall current. Magnetic fields
couple to the momentum-dependent part of the current operator, and it is this component
that gives rise to a Hall response. Operationally, the momentum derivative which enters in
the Hall conductivity acts on the vertices of the Hall conductivity, extracting the momentum-
dependent part of the current operator. If we are to understand the two-relaxation-time
interpretation then we must understand what feature of the scattering processes can force
the momentum-dependent part of the current operator to develop a different relaxation rate.

-
+σ *

e
p−

P C

T

σ|-p,      > |p,    >
h+

Figure 3. Illustrating the action of operatorsC, P andT on the electron state|p, σ 〉.

We now examine the symmetries that delineate Hall and electric current. There are three
fundamental symmetry operations that describe the excitations around a Fermi surface: time-
reversal (T ), inversion (P ) and charge-conjugation symmetry (C). Consider a Fermi surface
where the kinetic energy is defined by the Hamiltonian

H0 =
∑
pσ

εpψ†
pσ ψpσ . (21)

To make our discussion precise, we suppose that throughout any calculation of current
response functions, we may approximate the Fermi surface by a polyhedron where the centre
of each face is the Fermi wave-vectorpF . At the end of the calculation, the number of
sides of the polyhedron is to be taken to infinity. Consider an electron state with momentum
p = pF + δp, near a Fermi surface. This state is degenerate with a hole state formed by
annihilating an electron at momentump∗ = pF − δp∗ (εp = −εp∗ ) . The operation that
links the two states is that of charge conjugation. It is also degenerate with the up and
down electron states at momentum−p that we obtain by space or time-reversal operations.
We define the set of three symmetry operations as follows†:

C†ψpσC = σψ†
p∗−σ

P †ψpσP = ψ−pσ

T †ψpσ T = σψ−p−σ .

(22)

Charge conjugation changes the charge of the quasiparticle, but does not alter its velocity.
Parity and time reversal change the velocity of the quasiparticle (figure 3), without changing

† Note that the labels that we have assigned to these symmetry operations are specific for a Fermi surface, and
do not precisely corresponds to theP -, C- andT -operators of relativistic quantum field theory.
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its charge, as follows:

Ĉ: e −→ −e

P̂ , T̂ : v −→ −v.
(23)

Time reversal also flips the spin of the quasiparticle. These operators span a manifold of
eight degenerate electron and hole states on opposite sides of the Fermi surface. Provided
that the relevant physics involves electron states near enough to the Fermi surface, we
expect these symmetries to be preserved by interactions. This is the case, for instance, in
the one-dimensional Luttinger liquid. These symmetries are also preserved in the presence
of a magnetic field, where

H0[A] =
∑
pσ

εp−eAψ†
pσ ψpσ . (24)

Using the propertiesεp = ε−p = −ε−p∗ , the Hamiltonian transforms as follows:

O†H [A]O = H [−A] (O = C, P, T ) (25)

so these transformations are equivalent to changing the external fieldA −→ A∗ = −A, or
more correctly

A∗(x, t) =


−A(x, t) (C)

−A(−x, t) (P )

−A(x, −t) (T ).

(26)

Suppose|90〉 is a current-free state of the normal metal. If an external field is applied to
this state, the current-carrying state which develops is

|E, H〉 = T exp

(
i
∫

(A · j) d3x dt

)
|90〉 (27)

whereT denotes the time-ordered product,E andH are the electric and magnetic fields.
Now consider the transformed state

|E∗, H∗〉 = O|E, H〉. (28)

Since |90〉 carries no current, we expect it to be symmetric underP , C andT , O|90〉 =
|90〉. Thus

|E∗, H∗〉 = T exp

(
i
∫

(A∗ · j) d3x dt

)
|90〉 (29)

corresponds to the state which would evolve in response to the transformed electric and
magnetic fields,E∗ = −∂A∗/∂t andH∗ = ∇ × A∗. The parities of these fields underC,
P andT are then

A E H

C − − −
P − − +
T − + −

We can work out the parities of the electricJE- and Hall currentJH -operators under
these various transformations by comparing their expectation values in the two states|E, H〉
and |E∗, H∗〉,

j∗
E,H = 〈E∗, H∗|JE,H |E∗, H∗〉

jE,H = 〈E, H|JE,H |E, H〉. (30)
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To find the parities, we may apply the transformations(E, H) → (E∗, H∗) to the classical
equations of motion:

jE ∼ ne2

m

∫
E dt

jH ∼ e

m

∫
jE × H dt.

(31)

It follows that electric current transforms in the same way as the vector potentialJE ∼ A,
whereas Hall current transforms in the same way as the Poynting vectorE × H. The
parities of these two currents are thus given by the following table:

JE ∼ A JH ∼ E × H

C − +
P − −
T − −

Charge-conjugation parityuniquelydiscriminates between Hall and electric currents.
We may confirm the results of this heuristic discussion by directly applying the

transformation operators to the total current operator. UnderP̂ and T̂ , the entire current
operator transforms in the same way, and it is only underĈ that it divides up into two
components of opposite parity.

Using this information we can construct the Hall and electric current operators as
follows. Suppose the wave-function for a metal in an electromagnetic field is|E, H〉. We
may construct the state in which the electric and magnetic fields are reversed by applying
the charge-conjugation operator

|−E, −H〉 = Ĉ|E, H〉. (32)

The current in this state is given by

〈−E, −H|J |−E, −H〉 = 〈E, H|C†J C|E, H〉. (33)

In the original state|E, H 〉 state, the total current is given by a sum of electric and Hall
currents:

〈E, H|J |E, H〉 = jE + jH . (34)

In the state with reversed fields, the electric current reverses, but the Hall current does not,
i.e.

〈E, H|C†J C|E, H〉 = −jE + jH . (35)

It follows that the uniform electric and Hall current operators may be defined as follows:

J{
E

H

} = 1

2
[J ∓ C†J C]. (36)

When we explicitly evaluate these operators near the Fermi surface, we find that

JE = e
∑
pσ

vF ψ†
pσ ψpσ (C = −1)

JH = e
∑
pσ

ψ†
pσ m−1(δp − eA)ψpσ (C = +1)

(37)

where we have expanded the electron velocity in terms of the effective-mass tensor near
the Fermi surface. The Hall current is zero when the Fermi surface is flat.
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Notice how the electric and Hall current depend on changes in the electron occupation
that are respectively even and odd about the Fermi surface. Magnetic photons introduce a
small shift in the momentumδq and this gives rise to Hall current proportional toδq. If
Hall and electric currents relax at qualitatively different rates then there must be scattering
processes which selectively relax these two different types of quasiparticle distribution. In
other words, the scattering, and hence the microscopic self-energies of the electrons must
depend on charge-conjugation symmetry. Schematically, if6 is the electron self-energy,
then we require

6 = 61 + 62C̃ (38)

whereC̃ is one ofC, CP , CT or CPT .
There are two points to discuss about this conclusion. First, we may reject the

possibilitiesC̃ = CP or C̃ = CT , because under these transformations the electric current
is an even-parity operator and the Hall current is an odd-parity operator. We shall shortly
see that even-parity operators are always ‘short circuited’ by the quasiparticles with the
slowest relaxation rate, whereas odd-parity operators are governed by quasiparticles with
the fastest relaxation rate. If̃C = CT or CP , it would mean Hall currents relax more
rapidly than electric currents. This is a situation that actually occurs in the vicinity of a
superconducting transition, where the presence of a pairing field introduces scattering that
is sensitive toC̃ = CP [19]. In our case however, optical Hall measurements [11] already
rule this possibility out. The operatorsC and CPT differ only in a spin flip, and for
spinless properties, they are essentially indistinguishable. We shall chooseC̃ = C, but our
arguments are readily modified to accommodate the alternative choiceC̃ = CPT .

Second, we must be careful about the literal interpretation of equation (38). The charge-
conjugation operator does not commute with charge, so a term of the type that we are
proposing cannot exist in an environment of unbroken symmetry. This faces us with a
dilemma, for we know that on a macroscopic scale, the normal state of the cuprates has
no broken symmetry. Our symmetry analysis forces us to conclude thatif the Hall and
electric currents have different decay rates, then the electrons must perceive their local
environment as having developed a broken symmetry. We are thus forced to conclude that
there must be some kind of low-energy, charge-carrying excitation whose fluctuations create
a local environment which is symmetry broken on a time-scaleτ & τtr. From this point of
view, equation (38) should be regarded as a mean-field assumption that the charge-carrying
fluctuations produced by this environment are sufficiently slow that the vertex corrections
can be captured by an anomalous self-energy. We shall return to this point in the final
section.

If indeed scattering is sensitive to the charge-conjugation parity, then we might expect
other transport currents to reflect these two transport relaxation times. Neutral currents,
such as the thermal or thermoelectric current, are also even under the charge-conjugation
operator, thus we expect that their relaxation will be governed by the sameT 2 relaxation rate
as the Hall current. Circumstantial support for this idea is obtained from the thermopower
of optimally doped compounds.

Thermal and electric transport is normally described in terms of four fundamental
transport tensors [20]:

je = σE + β ∇T

jt = γE + ζ ∇T .
(39)

These tensors are directly linked to microscopic charge and thermal current fluctuations
via Kubo formulae. Table 1 compares the leading temperature dependences of the various
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transport tensors measured in the optimally doped cuprates with a series of calculations that
we now describe. The thermoelectric conductivityβ, determined from the conductivity and
Seebeck coefficients,S, β = −σS has a particularly revealing temperature dependence. In
a naive relaxation time treatment, the temperature dependence ofβxx is directly related to
the relevant quasiparticle relaxation rateτ−1

T E according to [21]

βxx = −
(

π2kB

3e

)(
kBT

εF

)
ne2

m
τT E (40)

where εF is the Fermi energy. Combining this with the electrical conductivity,σxx =
(ne2/m)τtr, the dimensionless thermopower is then

S̃ = eS

kB

=
(

τT E

τtr

)(
π2

3

)(
kBT

εF

)
. (41)

In optimally doped compounds [22], the thermopower contains an unusual constant part,
S̃ ≈ S̃0 − bT whereS̃0 ∼ 0.1, which indicates that

τ−1
T E = T 2/Wth (42)

is a factorT/ηWth smaller than the transport relaxation rate, whereWth = (3S̃0/π
2η)εF ∼

εF /10. The comparable size and temperature dependence ofτ−1
T E andτ−1

H suggest that the
same type of quasiparticle carries both the Hall current and the thermocurrent.

4. Charge-conjugation eigenstates and the derivation of the transport equation

Having argued the case for a scattering mechanism which is sensitive to charge-conjugation
parity, we now establish the effect on the transport properties. We need to express currents
in terms of charge-conjugation eigenstates rather than the charge eigenstates, electrons (and
holes) that we are familiar with. This amounts to a change of basis. While the self-energy
of the carriers will now be diagonal in this new basis, external applied fields will, in general,
be able to interconvert the two charge-conjugation eigenstates.

The eigenstates of the charge-conjugation operator defined in equation (22) may be
written as

apσ = 1√
2

[ψpσ + σψ†
p∗−σ ] (C = +1)

bpσ = 1

i
√

2
[ψpσ − σψ†

p∗−σ ] (C = −1).

(43)

Fermions which are eigenstates of the charge-conjugation operator were first introduced by
Majorana over sixty years ago and, for this reason, are called, ‘Majorana’ fermions [23].
When we construct a Majorana representation of the Fermi surface we are, in essence,
folding the quasiparticle states inside the Fermi surface to the outside. The momenta of
all Majorana fermions are restricted to the outside of the Fermi surface, for particles inside
the Fermi surface are the antiparticles of those outside. Our central hypothesis is that
quasiparticle states of opposite charge-conjugation parity have different relaxation rates.

To illustrate how this leads to distinct relaxation rates controlling the Hall and electric
currents, consider the thought experiment illustrated in figure 4. Imagine a flux of electrons
injected into a block of cuprate metal. Inside the metal we must consider these electrons to
be a linear combination ofa- andb-states

ψ†
pσ −→ a†

pσ + ib†
pσ . (44)
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Figure 4. A simple picture of transport where relaxation processes are sensitive to charge-
conjugation parity. An electron current converts into an equal mixture of charge-conjugation
eigenstatesa andb. One parity decays rapidly leaving a neutral current with equal numbers of
electrons and holes moving together. In a magnetic field this neutral current can still induce a
Hall voltage.

As the a- and b-quasiparticles propagate through the metal, one species, saya, rapidly
decays and becomes incoherent. At distances greater than the mean free path of thea-
quasiparticles, onlyb-particles remain. The residual current is neutral, with equal numbers
of electrons and holes moving at the same velocity. Charge transport is thus controlled by
the short mean free path. However, should theb-particle flux move through a region of finite
magnetic field, the Lorentz force will deflect the electron and hole components inopposing
tangential directions. Since this neutral current can generate a finite Hall current, the Hall
response is controlled by the longer mean free path. From this simple thought experiment
we may make the following general observations which will apply to this phenomenology:

• the physics is insensitive to whichC-eigenstate decays faster;
• cleanly disentangling the separate lifetimes requires that0f � 0s ; and
• were we to repeat the thought experiment choosing instead eigenstates ofC̃ = CP or

CT —i.e. linear combinations of electrons and holes moving with opposite velocities—
then in this case the long-lived quasiparticle would carry the electric current. However,
application of a magnetic field now deflects the electron and hole components in the
same direction, so there is no Hall response. So in this case, Hall currents decay quickly
and electric currents decay slowly. This is the situation near a superconducting phase
transition, where the long-lived quasiparticles at the Fermi surface are eigenstates of
CP [19].

We now develop the transport theory which follows from our phenomenological
assumption. We will not discuss spin transport, restricting our attention to a simplified,
spinless electron fluid. One may use diagrammatic perturbation theory to derive the
conductivities and this is done in appendix B for completeness. However, since high-
order transport properties (such as the magnetoconductance) require the careful analysis of
rather a large number of diagrams, we also develop a Boltzmann transport equation. In
the limit of well defined quasiparticles near the Fermi surface, the results are equivalent.
The derivation of the Boltzmann equation is again somewhat technical and may be found in



Two transport relaxation times in the cuprates 9997

appendix C. There we derive the following matrix generalization of the Boltzmann equation:

ḟ + 1

2

{Vp, ∇Rf
}

+ + e

2

{
(E + Vp × B)τ 2, ∇pf

}
+ = I[g] (45)

where

Vp = 1

2
(vp + vp∗)1 + 1

2
(vp − vp∗)τ 2 (46)

and

f(t, R, p) =
( 〈a†

pap〉 〈b†
pap〉

〈a†
pbp〉 〈b†

pbp〉
)

R,t

(47)

is the quasiparticle density matrix. This matrix measures the local density of quasiparticles at
the course-grained pointR and its off-diagonal elements allow for the quantum superposition
of a- andb-particles.

We see that the left-hand side of the transport equation is similar to a conventional
Boltzmann equation: there are driving terms due to gradients in the distribution function and
due to electromagnetic fields. The new features are the anticommutators, which come from
making a gradient expansion with matrices rather than single functions, and the presence
of the second Pauli matrixτ 2. This is a reflection of the fact that the EM field couples to
charge and, sincea andb do not have well defined charge, they can be interconverted by
the applied field.

The right-hand side of the transport equation contains the essence of our phenomenology:
the collision integral. It is a functional of the departure from the equilibrium distribution
g = f − f(0). The simplicity of the experiments forces us to the hypothesis that the return to
equilibrium is governed by two independent relaxation times—one for each of the charge-
conjugation eigenstates. This is represented by the collision integral

I[g] = −1

2
{Γ, g}+ = −1

2

{(
0f 0
0 0s

)
, g

}
+

. (48)

Putting 0f = 0s one recovers the usual relaxation time approximation of textbook
treatments.

Our transport equations are completely general for arbitrary Fermi surface and
anisotropic scattering rates but, as we have shown, including these features will not account
for the products in relaxation rates appearing experimentally in magnetotransport. We
therefore make the simplifying assumption that we have a cylindrical Fermi surface and
that 0f and0s are momentum independent.

Setting up the transport equation under these conditions we note that, near the Fermi
surface, we haveδp∗ = δp + O(δp2/pF ) where the small correction does not enter into the
leading order (inT/EF ) transport coefficients. We may therefore write

Vp = vF 1 +
(

δp

m

)
τ 2 (49)

where vF and δp (>0) are normal to the Fermi surface. For the in-plane transport
properties we discuss here,E and ∇T lie in the basal plane and the magnetic field is
always perpendicular to the cuprate layers.

In the absence of applied fields, the distribution of quasiparticles is given by a diagonal
matrix since, by construction, the Hamiltonian is diagonal in the basis of our charge-
conjugation eigenstates:

f 0
p = 1

2

[
nF (εp) + nF (−εp∗)

]
1. (50)
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The derivative,∇pf 0
p = n′

F Vp, is not purely diagonal. Heren′
F is energy derivative of the

Fermi function∂εnF (εp).
By expressing the deviation from the equilibrium distribution in the Pauli matrix basis

gp = g0(p)1 + g(p) · τ and substituting into the Boltzmann equation, we find that the
componentg1 decouples. The remaining components satisfy

(a + b)

( g0(p)

g2(p)

g3(p)

)
= c (51)

where, with0± = (0f ± 0s)/2, we have

a =
( 0+ 0 0−

0 0+ 0
0− 0 0+

)
b =

( hp wp 0
wp hp 0
0 0 hp

)
(52)

c = −n′
F

( eE · δp/m − v2
F p̂ · ∇T /T

evF E · p̂ − (vF /m)δp · ∇T /T

0

)
(53)

with

hp = vF p̂ · ∇T ∂T + (e/m)δp × H · ∇p (54)

wp = (δp/m) · ∇T ∂T + e(E + vF p̂ × H) · ∇p. (55)

We solve these equations using the Zener–Jones method [8], solving order by order in
the fields. We may write the solutions schematically as

g(n) = (−a−1b)g(n−1) g(1) = a−1c. (56)

The first-order solution is

g
(1)

2 = − n′
F

0+

(
evF E · p̂ − vF

mT
δp · ∇T

)
(57)(

g
(1)

0

g
(1)

3

)
= − n′

F

0f 0s

(
0+
0−

) (
eE · δp

m
− v2

F

T
p̂ · ∇T

)
. (58)

This is sufficient for computing the lowest-order transport coefficients. Off-diagonal
conductivities come from the second-order solution. The magnetic-field-dependent part
of g(2) is then

g
(2)

2 = en′
F

m

[
evF p̂ × H · E

0f 0s

− vF δp2 p̂ × H · ∇T

02+mT

]
(59)

(
g

(2)

0

g
(2)

3

)
= −en′

F

m0f 0s


02

+ − 02
−

0f 0s

−1 0

20+ 0−
0f 0s

0
0−
0+




e δp × H · E

m
v2

F δp × H · ∇T

T
vF δp p × H · ∇T

mT

 . (60)

Finally we require the third-order solution to obtain the magnetoconductivity. Assuming no
temperature gradient, the leading term inT/EF will come from

g
(3)

2 = −e3n′
F vF

m20+

02
+ + 02

−
(0f 0s)2

(p̂ × H) · (E × H). (61)
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Having solved the Boltzmann equation we determine the conductivities from the current
response in applied fields. The electric and thermal currents may be written in terms ofg
as follows:

je =
∑
p>pF

2evF p̂g2(p) + 2
e

m
δp g0(p) (62)

jt =
∑
p>pF

2v2
F δp g0(k) + 2

vF δp2

m
p̂g2(k). (63)

The conductivities can then be extracted and we summarize the results in the second column
of table 1.

Table 1. Leading temperature dependences of transport coefficients compared with proposed
decomposition into two Majorana relaxation times (L0 is the Lorentz numberπ2k2

B/3e2).

LeadingT -behaviour
Majorana
fluid 0f � 0s

Conductivity ×(m/e2) (T � T 2) Experiment Reference

σxx
2

0f + 0s

T −1 T −1

σxy
ωc

0f 0s

T −3 T −3

1σxx −σxx

2

(
ω2

c

02
s

+ ω2
c

02
f

)
T −5 T −5

βxx − eT L0

2 εF

(
1

0+
+ 0+

0s0f

)
T −1 T −1 [24]

βxy βxx
ωc

0+
T −2 T −3(?) [24]

ζxx −L0

2

(
T

0f

+ T

0s

)
T −1 (?) [25]

ζxy ζxx
ωc

0+
T −2 T −1(?) [25, 26]

First note that under the conditions where0− = 0 (i.e. 0f = 0s = 0+) our results
recover the usual relaxation time approximation for isotropic metals. Away from this point
however, we see that in the Hall conductivityσxy , for example, a product of different
scattering times appears. In particular, when we identify the physically measured relaxation
rates we see that

0tr = (0f + 0s)/2 (64)

0H = 2(0−1
f + 0−1

s )−1 (65)

(i.e. relaxation rates add in0tr whereas lifetimes add in0H ). To address the cuprate
experiments we must introduce temperature dependences of these scattering times. With
0f ∼ T −1 and 0s ∼ T −2 (i.e. with no impurity scattering terms which is appropriate
for optimally doped single-crystal YBCO) we may extract the leading low-temperature
behaviour of all the transport conductivities as shown in the third column of table 1. These
we may compare directly with experiments as shown in the last two columns of the table.

A simple physical picture of the effect of an electric field is provided in figure 5. When
an electric field is applied, it produces an admixture ofC = +1 andC = −1 quasiparticles
whose joint relaxation rate0tr = 1

2[0s + 0f ] ≈ 1
20f is dominated by the rapidly relaxing
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θs

f
θ

E

B

E

(b)(a)

Figure 5. (a) Application of field creates a mixture of slowly and rapidly relaxing quasiparticles.
(b) The slow and fast components of the Majorana fluid precess in a field, developing their own
Hall angleθs,f = ωc/0s,f .

quasiparticles. Magnetic fields couple diagonally to the Majorana quasiparticles, causing
fast and slow components to develop their own Hall angleθs,f = ωc/0s,f (figure 5). Since
θs � θf , the Hall current is entirely dominated by the slow-relaxation quasiparticles. This
has the effect of producing a finite magnetoresistance, even for isotropic Fermi surfaces:
1ρ/ρ = tan2 θH .

For completeness we also include in our table the thermal transport conductivities. Of
these, the thermopower and thermal conductivity have been most studied. A thermal gradient
couples diagonally to the quasiparticles, so thermal and thermoelectric conductivities are
determined by the slow relaxation rate. The difference in the relaxation times of the electrical
and thermoelectric currents then gives rise to the unique temperature-independent component
in the Seebeck coefficientS = −ρβ ∝ (T 0f /0s) as we have already indicated. We cannot
compare our prediction of the thermal conductivity to experiment since we are unable to
extract the large-phonon contribution. Magnetothermal measurements are still at an early
stage but these are included in the table where results have been published.

Thus far we have neglected spin. In the absence of a measurement of the ‘spin
conductivity’ it is not clear which scattering rate will dominate this quantity. By choosing
eigenstates ofC we have developed a phenomenology in which spin currents decay with
the slow relaxation rate—spin–charge decoupling. However, if eigenstates ofCPT were
used then in addition to the results already derived we would have a phenomenology where
spin currents and electric currents decay with the fast rate.

Finally, the results derived here may be extended to finite frequency by the replacement
0f → 0f (ω)− iω, 0s → 0s(ω)− iω. Detailed fits to experiment require a knowledge of the
frequency dependence of the relaxation rates and therefore a microscopic model. However,
at low frequencies we may assume that relaxation rates are frequency independent and so
optical measurements provide an important check on our phenomenology. For the a.c. Hall
conductivityσxy(ω) our model predicts

tanθH (ω) = σxx(ω)

σxy(ω)
= ωc

2

(
1

0f − iω
+ 1

0s − iω

)
. (66)
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There are thus slow and fast components to the Hall relaxation. At low frequenciesω � 0f ,

cotθH (ω) ∼ 2

(
0s(T ) − iω

ωc

)
(0s, ω � 0f ). (67)

In particular Im[cotθH (ω)] ∼ ω/ωc is predicted to be temperature independent. This
should be contrasted with the skew scattering model [17], whereωc → ω∗

c (T ) ∝ 1/T is
renormalized and there is only one relaxation rate0s = 0f . In this case, Im[cotθ(ω)] ∝ ωT

is proportional to temperature.
Recent optical measurements on YBCO films by Drewet al have furnished results

qualitatively in accord with equation (67) [13]. When the sample becomes superconducting,
a flux-lattice pinning mode develops in the optical Hall angle, with roughly twice the spectral
weight found at frequencies below∼200 cm−1 in the normal state. Our model can account
for this feature in terms of the additional, high-frequency Hall relaxation at frequencies
ω ∼ 0tr. If the additional spectral weight in the high-frequency component condenses into
the flux-lattice response, we expect a doubling of the transverse spectral weight. One of
the difficulties that these measurements present us with is that0s is only a factor of 4
times smaller than0f . It is not clear at present, whether this is due to disorder in the thin
films used, or whether this constitutes a significant discrepancy with our phenomenology.
It would be very interesting in this respect to have a direct measurement of the temperature
dependence of0s , which is not at present available.

5. Microscopic implications

We now return to addressing some of the key microscopic issues that were skirted in the
phenomenology of the previous sections. We have been led by symmetry arguments to
propose an electron relaxation rate that depends on the charge-conjugation operator:

Γ = 01 + 02Ĉ (68)

so that the even- and odd-parity charge-conjugation eigenstates decay at different rates. Each
time the charge-conjugation operator acts, the following units of charge and momentum are
transferred from the quasiparticle to its environment:

1Q = ±2e 1P = ±2kF . (69)

In other words, we require a metallic environment where the electrons or holes can emit
low-energy quanta of momentum and charge. The phenomenology that we have developed
is, in essence, a mean-field theory where these low-energy quanta are treated as condensed
excitations.

A closely analogous situationdoesoccur in the presence of superconducting fluctuations.
A Bogoliubov quasiparticle at the Fermi energy

α
†
kF

|8〉 = 1√
2
(c

†
kF ↑ + c−kF ↓)|8〉 (70)

is an even-parity eigenstate ofCP . In the presence of superconducting fluctuations, the
relaxation rates of the eigenstates ofCP differ. Calculations by Aronov, Hikami and
Larkin (AHL) confirm this conclusion: the conductivity contains an enhancement due to
superconducting fluctuations:

σxx → σxx(1 + λ) (71)

and the Hall angle is depressed by the same factor:

θH → θH (1 − λ). (72)
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Since the conductivity and the Hall angle satisfy optical sum rules, in the presence of
superconducting fluctuations the transport relaxation rate is reduced but the Hall relaxation
rate is enhanced:

0tr → 0tr(1 − λ)

0H → 0H(1 + λ).
(73)

An appropriate generalization of Landau–Ginsburg theory, where the order parameter carries
momentum, is the ‘Brazovskii model’ [27], with the action

F =
∫

ddx

{
a

2
|ψ|2 + b

4!
|ψ|4 + ξ4

0

2
|[p/2 − (2kF )2

]
9|2

}
p/ = −i h̄∇ − 2eA

(74)

where the pair fluctuations arestaggered. An extension of the AHL calculation to this case
is expected to to show anenhancedcurrent relaxation rate, and adepressedHall relaxation
rate.

One of the interesting questions raised by this discussion is that of whether there might
be a microscopic link between our phenomenology and spin–charge decoupling [3]. There
are two fascinating links that should be mentioned here. Firstly, the holon in a Luttinger
liquid is a charge-carrying excitation with a definite momentum. Holon emission would
give rise to ‘electron oscillations’: fluctuations between degenerate electron and hole states
on the same side of the Fermi surface of the form

e− 
 spinon state
 h+ (75)

which would generate the time-scale separation that we have been discussing. This would
be the a direct analogue of the processes that give rise to kaon oscillations [28] in particle
physics. Secondly, although the holon is charged, since it is not possible to assign a well
definedsign to the charge of a holon, both the spinon and the holon should be regarded as
charge-conjugation eigenstates. In other words, spin–charge decoupling may naturally lead
to quasiparticles that are charge-conjugation eigenstates, a condition that we need for two
relaxation time-scales.

Before describing our attempts to make a passage to a more microscopic theory, let us
summarize the key questions that have to be addressed.

• What is the nature of the low-energy charged excitations that mix electrons and holes, and
how does this excitation couple to the original electron fields to produce the anomalous
scattering described above?

• What are the dynamics of the charged excitation, and how is it possible to produce
something with a correlation length that exceeds the electron mean free path, but does
not diverge to macroscopic lengths, over a very wide range of temperatures?

We should like to end by sketching our attempt to address these questions. We have tried
to link our phenomenology with the other non-Fermi-liquid properties of the cuprate metallic
state. Optical conductivity measurements show that the phase angle of the conductivity is
almost constant up to 1 eV, a feature which suggests that the electron self-energies have a
singular energy dependence out to high energies [29]. The appearance of a linear transport
relaxation rate around the Fermi surface of the cuprates has been used to argue that the
electron self-energy has a ‘marginal’ form [30]:

6(ω) ∝ ω ln[max(ω, T )] (76)
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where max(ω, T ) is an analytic function with asymptotes given byω, or T , whichever is
bigger. A self-energy with this particular structure is unusual even in the context of non-
Fermi-liquid models. For example, in a 1D Tomonaga–Luttinger liquid, the self-energy has
the form6(ω) ∼ ωα, whereα depends on the interactions.

There is a way in which the two-relaxation-time scenario can be unified with the marginal
Fermi liquid picture. Let us suppose that the marginal scattering is highly retarded, so that
the momentum dependence of the self-energy can be ignored in our discussion. Since the
marginal self-energy is scale invariant, we expect it to obey a simple power law in the time
domain. By power counting, it follows that

6(t) ∝ 1

t2
sgn(t). (77)

We identify 6(t) as the time dependence of the three-body amplitude for the intermediate
three-bodystate formed in electron–electron scattering. The local propagator of electrons
in the Fermi sea has the formG(t) ∼ 1/t . In a Fermi liquid6(t) ∼ [G(t)]3 ∼ t−3. In
a marginal Fermi liquid, the intermediate three-body state can be written in the suggestive
form

6(τ) = λ2G(τ)2

[
1

2
sgn(τ )

]
. (78)

We interpret the additional term on the right-hand side as a zero-energy fermionic excitation,
without internal dynamics, as shown in figure 6(a).

1/ t

1/ t

sgn (t)

(b)

(a)

CΣ(ω)   =  Σ (ω) ( 1 +      )

sgn(τ)2Σ(τ)∼ (1/τ  )

Figure 6. (a) A three-body bound-state interpretation of the marginal self-energy; (b) in order
that the bound state splits the degeneracy between the electric and Hall relaxation time, it must
be a state of definite charge-conjugation symmetry, which then generates normal and anomalous
components of the self-energy of equal weight.

This hypothetical excitation may be represented by a single Fermi field8, with
propagator

G
(0)
8 (x − x′, τ ) = 1

2
δ(x − x′) sgn(τ ). (79)

In the frequency domain

G0
8(k, ω) = 1

ω
. (80)

The possibility that such a three-body excitation might drive marginal Fermi liquid behaviour
was first considered by Ruckenstein and Varma [31]. In its original form, the three-body
hypothesis did not explain why such a resonance is pinned to the Fermi energy. Generically,
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a fermionic mode at the Fermi energy will develop a self-energy that tends to repel it from
the Fermi energy, eliminating the scale invariance which is fundamental to the marginal
scattering.

The arguments of the previous sections suggest an intriguing unified solution to this
problem. Experiment tells us that the marginal scattering rate selectively relaxes the
electrical current: we have argued that to do this, the marginal scattering must occur
in a channel with a definite charge-conjugation symmetry. If this is the case, then the
hypothetical three-body bound state must have a definite charge-conjugation parity. We are
free to take this parity to be positive, so that

8†(x) = C†8(x)C = +8(x). (81)

Such a state would immediately open up a decay mode of the form

e− 
 (e−h+8) 
 h+ (82)

which would then cause theC = +1 eigenstates of the electron fluid(1/
√

2)(e− + h+)

to decay more rapidly than theirC = −1 counterparts. In the language of spin–charge
decoupling mentioned above, the intermediate state might be identified with the spinon.

This hypothetical8 fermion that mediates electron oscillations is automatically particle–
hole symmetric. Furthermore, the momentum-independent part of its self-energy68(ω) is
necessarily an odd function of frequency,68(ω) = −68(−ω). The8 fermion couples to
the conduction electrons, to develop a self-energy68(τ) ∝ 1/τ 3, so Im68(ω) ∝ ω2 at low
frequencies, which means that local decay processes do not broaden the sharpness of this
resonance. The only way that such a mode can develop a width is through the development
of coherent coupling between different sites. In the absence of coherence, the momentum
dependence of68 can be neglected, so the sharp pole in its propagator is preserved. That
is, if

G0
8(ω) −→ G8(ω) = 1

ω − 68(ω)
(83)

then
1

π
Im

[
G8(ω)

] = Z δ(ω) + (background) (84)

whereZ−1 = [1 − 68(ω)]|0.
A three-body bound state with definite charge-conjugation symmetry arises in the two-

channel Kondo model, where it is a consequence of channel symmetry [32]. In our case, the
singular scattering derives from a spontaneous formation of these bound states, presumably
at energies around 1.0 eV, where the phase angle of the optical conductivity becomes
constant. We can use this idea to make the marginal self-energy more precise. Let us
generalize the form of equation (78) to finite temperatures, writing

G(τ) = πρT

sin(πT τ)
(85)

whereρ is the density of states. Fourier transforming this, we may derive the frequency-
dependent self-energy as follows:

6(iωn) = i

2β

∫ β−3−1

3−1
sinωnτ

[
λπρT

sin(πT τ)

]2

(86)

where3 is a cut-off. Carrying out the integral and analytically extending to real frequencies,
we obtain

1

λ̃2
6(ω − iδ) = −ω

[
ln

3̃

T
− 9

(
1 + iω

2πT

)]
+ iπT (87)
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where3̃ = 3e1−C/2π and λ̃ = λρ. This function has an imaginary part

3(ω) = λ2ω

2
coth

[ ω

2T

]
. (88)

Scale-invariant marginal Fermi liquid behaviour thus has a unique crossover from high to
low frequencies.

Let us now discuss the hypothetical interaction vertex illustrated in figure 6. How can a
three-body bound state interact selectively with only one component of the Fermi sea? To
bring out the gauge invariance of the problem, we need a slightly more general definition
of the Majorana fermions around the Fermi surface. If we write the conduction electrons
in terms of the following matrix spinor:

9p =
(

ψp↑ −ψ−p∗↓
ψ†

−p↓ ψ†
p∗↑

)
(89)

then we can make a decomposition into Majorana fermions as follows:

9p = 1√
2
(ψ0

p + iψψp · τ ). (90)

We can define coarsely localized Majorana fermions by taking the Fourier transform of
these quantities:

ψ(a)(x) =
∑
{p}

ψ(a)
p eip·x (91)

where the momentum sum is taken within a narrow shell around the exterior of the Fermi
surface.

The existence of a Majorana bound state amounts to the assumption that three-body
correlations are governed by the following contractions:

| | |

ψ(1)(x)ψ(2)(x)ψ(3)(x)= λ8(x). (92)

If we want to be more general, we can write
| | |

ψ(a)(x)ψ(b)(x)ψ(c)(x)= λεabcdgd(x)8(x) (93)

wheregd(x) is a four-component vector that describes the wave-function of the bound state.
Similar types of three-body correlation have been considered in the context of odd-frequency
pairing correlations [33, 34].

These considerations motivate us to consider interaction vertices of the form

HI =
∑

x

εabcdgd(x)8(x)ψ(a)(x)ψ(b)(x)ψ(c)(x) (94)

as a possible common origin of marginal Fermi liquid behaviour and two relaxation times.
The quantitygd(x) is to be regarded as a slowly varying order parameter that describes the
collective emission of charged excitations. If we rotate to a basis whereg = 1

6(λ, 0, 0, 0),
locally the interaction takes the form

HI = λ
∑

x

8(x)ψ(1)(x)ψ(2)(x)ψ(3)(x) (95)

so the three ‘vector’ components of the conduction sea develop a marginal self-energy,
whereas the one remaining componentψ(0)(x) would not couple to the bound state, thereby
preserving a more conventional Fermi liquid self-energy. In order for this picture to work, it
is necessary to assume that the three-body wave-function,g(x), has a coherence length that
is large compared with electron mean free paths. One of the interesting challenges is to see
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whether the optical conductivity and Hall conductivity predicted by such a phenomenology
are in accord with experiment.

At present, these ideas are incomplete and under closer scrutiny they suffer from a
number of difficulties, in particular the following four.

(i) The description is incomplete without a Lagrangian for the three-body amplitude,g(x).
It is difficult to see how to construct such a Lagrangian in a fashion that will preserve
both charge and momentum conservation.

(ii) What is the nature of the charged excitation represented byg(x)? It is tempting to
identify this object with the ‘holons’ entering into Anderson’s Luttinger liquid scenario.

(iii) Why does the boson represented byg(x) not short circuit the conductivity at low
temperatures, like a supercurrent?

(iv) If the three-body bound state is a local object, then what possible aspect of the local
quantum chemistry could give rise to it? Contrariwise, if the bound state is rather
extended in real space, then what aspect of the Fermi surface would give rise to its
spontaneous formation?

Though we are clearly far from a microscopic explanation of the two relaxation times,
we expect certain broad features of our discussion to remain robust. We have demonstrated
that experimental results, combined with the use of the transverse optical sum rule, strongly
support the presence of two independent relaxation time-scales for the Hall and electric
current. This kind of separation between relaxation rates, if confirmed, indicates that
the underlying quasiparticles must be states of definite charge-conjugation parity. Such
a separation cannot occur without the presence of some, as yet unidentified, low-energy
excitation that carries both currentand momentum.

We have discussed the possible origin of this separation. One possibility is the presence
of staggered superconducting fluctuations. Another, not necessarily unrelated idea, is the
possibility that what we are seeing here is some form of spin–charge separation. In this case,
the low-lying charge excitations of definite charge-conjugation parity might be identified
with the holons of a Luttinger liquid. Finally, we have described how the presence of
a zero-energy fermionic mode with definite charge-conjugation symmetry may provide a
way to unify these ideas with the idea of a marginal Fermi liquid. These ideas may not
be mutually exclusive. Careful experiments, especially more accurate optical conductivity
measurements, clearly have a central role to play in elucidating these issues.
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Appendix A. Diagrammatics for the Hall effect

This section summarizes the conventional calculation of the Hall conductivity, following
the approach of Vorugantiet al [18] Throughout, we assume an s-wave scattering potential
which avoids the need to consider vertex corrections.

For spinless electrons with dispersionε(p) ≡ εp, the Hamiltonian in the presence of a
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vector potential is given by

H =
∑

p

ψ†
pε[p − eA(x)]ψp (A1)

wherex = i∇p is the position operator andA is an external vector potential that varies
slowly on macroscopic length scales. The field-dependent part of the action,SA, can be
systematically in powers ofA as follows:

SA =
∞∑

n=1

(−e)n

n!
εα1···αn

p (Aα1
q1

· · ·Aαn

qn
)ψ†

p+ψp−

= eεα
pAα

qψ†
p+q/2ψp−q/2 + e2

2
εαβ
p Aα

kAβ
qψ†

p+k/2+q/2ψp−k/2−q/2 + · · ·
where repeated 4-momenta and indices are summed over,p± = p ± ∑

j qj /2, and

εα1···αn

p = ∇pα
1 ···pα

n
ε(p). (A2)

The current operator is determined from

J α
q = − 1

V

∂SA

∂Aα−q

. (A3)

We wish to determine the current response to a uniform electric and static magnetic field.
The vector potential can be divided up into two components:

A(r, t) = aE(r, t) + aH (r) (A4)

where the time-dependent term gives rise to the electric fieldE = −iνaE
ν , and the static

termaH determines the magnetic field,H = −iq×aH
q . For simplicity, we shall concentrate

on a single frequencyν, and momentum±q, whereq · q is ultimately set to zero. The
electrical and Hall conductivity are obtained by determining the current response as a power
series inA. Gauge invariance seriously reduces the numbers of diagrams which contribute
to the conductivity at a given order (see reference [18]).

To first order inA, we expect currents proportional toE andH:

J = σE + χ∇ × H (A5)

which correspond to diagrams proportional to−iνaE
q,ν andq2aH

q . For the conductivity we
may limit our attention to diagrams proportional to iνaE . The only frequency-dependent
diagram is the ‘bubble’ diagram, illustrated in figure A1(a). The conductivity is thus given
by

σxx(ν) = e2

−iν

∑
p

(εx
p)23(p, ν) (A6)

where

3(p, iνn) = 1

β

∑
ωr

G(+)
p

[
G(−)

p − G(+)
p

]
. (A7)

Here we have used the notationG(±)
p ≡ G(p, iω±

r ) and ω±
r = ωr ± νn/2. For frequencies

far smaller than the Fermi energy, the Matsubara sums give rise to a function that is quite
sharply peaked in the vicinity of the Fermi surface. This permits us to replace the momentum
sum by an energy integral as follows:∑

p

(εx
p)23(p, iνn) → n

m

∫ ∞

−∞
dε

1

β

∑
ωr

G(+)
ε

[
G(−)

ε − G(+)
ε

]
(A8)
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where

Gε(ωn) =
[

iωn − εp + i

2
0 sgn(ωn)

]−1

is the electron propagator with a phenomenological relaxation rate0, and we have assumed
a parabolic band to replace the angular average as follows:〈v2

x〉N(0) → n/m.
Carrying out the energy integration as a contour integration then gives∑

p

(εx
p)23(p, iνn) = n

m

νn

0 + νn

(A9)

where we have takenνn > 0. Extending this result to real frequencies recovers the classic
relaxation time approximation

σxx(ν + iδ) = ne2

m

1

0 − iν
. (A10)

q

Ha

q

ω

ω+ν

ν

p+q/2

ω+ν
p-q/2

aE

ω
ν

ω+ν

ν

a

p-q/2

q

a H

νq

(b)

ω

ω+ν ω

ν

p+q/2 p+q/2

p-q/2

aH

aE

νq

ν

EaE

(a)

(c) (d)

ω+ν ω
p-q/2p+q/2

ν
q

Figure A1. (a) The sole diagram contributing to the electrical conductivity, while (b), (c), and
(d) show the terms contributing to the Hall conductivity.

In an isotropic system, the second-order response determines the Hall current, which is
proportional toE × H. In terms of the vector potential theuniform component of the Hall
current must have the following form†:

jH (ν) ∝ νaE(−q) × [
q × aH (q)

]
. (A11)

There are six second-order diagrams proportional toaE(−q, ν)aH (q), but gauge invariance
tells us that all terms must cancel excepting those which depend on a product of bothν

and q. These diagrams are illustrated in figure A1(b)–A1(d). We can further simplify
things by directly extracting the leadingq-dependence. Adding the two triangle diagrams,
figure A1(b) and A1(c), we find that the terms proportional toq obtained by expanding the
Green’s functions cancel, and the only residualq-dependence comes from expanding the
vertex: εα

k±q/2 → εα
k ± qβε

αβ

k /2. The leadingq-dependence of figure A1(c) is obtained by

† We use a slightly different convention to Vorugantiet al. By choosing an electric field with a momentum that
is precisely opposite to the magnetic field, we can directly extract the uniform Hall current. This makes the link
between the Hall current and the momentum-dependent part of the velocity operator more apparent.
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expanding the Green’s functions in the bubble:G(k ± q/2) → G(k) ± qβε
β

kG(k)2. The
sum of these contributions is represented by the triangle diagrams shown in figure 2(b).
The evaluation of these two diagrams leads to

σxy(ν) = e3H

ν

∑
k

(εx
kεx

kε
yy

k − εx
kε

y

kε
xy

k )5(k, ν) (A12)

where

5(k, iνr) = 1

2β

∑
ωn

G(+)

k G(−)

k

[
G(−)

k − G(+)

k

]
. (A13)

In the Landau gauge, whereaH = (aH , 0, 0) and q = (0, q, 0), the first term in (A12)
is obtained from the triangle diagrams, figure A1(b) and A1(c), whereas the second term
comes from theq-expansion of the bubble diagram, figure A1(d). For a parabolic band,
the second term vanishes, so we could have completely neglected the bubble diagrams. As
in the case of the conductivity, the Matsubara summations lead to a function that is quite
sharply peaked within a fewkT of ε(kF ), so the momentum sum only probes the region
close to the Fermi surface and the momentum sum can then be replaced by an energy
integral as follows:

σxy(iνn) = ne3H

iνnm2

1

2β

∑
r

5̃(iω+
r , iω−

r ) (A14)

and

5̃(iω+
r , iω−

r ) =
∫ ∞

−∞
dε G(+)

ε G(−)
ε

[
G(−)

ε − G(+)
ε

]
(A15)

where we have used the shorthand notationG(±)
ε ≡ G(ε, iω±

r ). Carrying out the energy
integration then gives

5̃(iω+
r , iω−

r ) = π i

(0 + νn)2
[2(ω+

r ) − 2(ω−
r )] (A16)

so

σxy(ν + iδ) = ne2

m

ωc

(0 − iν)2
(A17)

recovering the result of Boltzmann transport theory.

Appendix B. Diagrammatics with charge-conjugation eigenstates

We now build on the experience gained in appendix A and repeat the calculation using
charge-conjugation eigenstates and a phenomenological scattering rate which depends on
the charge-conjugation parity. We begin by combining electron states above the Fermi
surface with their charge-conjugation partners below it to make a spinor

9pσ =
(

ψp−σ

σψ†
p∗σ

)
. (B1)

The Hamiltonian in a field is then

H0 =
∑

|p|>|pF|,σ
9†

pσ εp−eAτ 39pσ (B2)
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where τ3 is the third Pauli spinor. The momentum sum is now restricted to outside the
Fermi surface because the hole states are already included in the spinor. By differentiating
with respect to the vector potential, we may derive the corresponding current operator

J = e
∑

|p|>|pF|,σ
9†

pσ

[
vp̂F

τ 3 + m−1(δp − eAτ 3)
]
9pσ . (B3)

In this basis the electromagnetic field is diagonal, but the states are not eigenstates ofC. To
make the charge-conjugation eigenstate, we make a rotation within the degenerate electron
and hole states, writing

9̃pσ = U9pσ (B4)

where

U =
 1√

2
1√
2−i√

2
i√
2

 9̃pσ =
(

apσ

bpσ

)
(B5)

wherea andb are defined in equation (43). The transformation to the new basis is easily
effected by noting that

Uτ 3U
† = τ 2 (B6)

whereτ 2 is the second Pauli matrix. In the new basis, the Hamiltonian is thus

H0 =
∑

|p|>|pF|,σ
9̃†

pσ εp−eAτ 29̃pσ (B7)

and the current operator becomes

J = e
∑

|p|>|pF|,σ
9̃†

pσ

[
vp̂F

τ 2 + m−1(δp − eAτ 2)
]
9̃pσ . (B8)

In the absence of an external field, this Hamiltonian is diagonal and charge conjugation is a
conserved symmetry [35]. Our phenomenological assumption is that the leading irrelevant
interactions in this Hamiltonian yield independent lifetimes for thea- andb-particles:

G−1
a (p, iω) = iω − εp + i

2
0f sgn(ω) (B9)

G−1
b (p, iω) = iω − εp + i

2
0s sgn(ω) (B10)

where we have arbitrarily assigned the fast relaxation rate to thea-particle. The matrix
propagator for9̃ is then

G(p, iω) =
(

Ga(p, iω)

Gb(p, iω)

)
. (B11)

In general0f and0s will be momentum and frequency dependent; however, out of ignorance
we assume that they are independent ofp (so we do not have vertex corrections). We will
also consider them to be frequency independent, though this is an assumption that is readily
relaxed.

It is straightforward to repeat the diagrammatic approach of appendix B in this matrix
formalism. Suppose for the moment we take a parabolic band and naively assume that
bubble diagrams of the form of figure A1(d) may be neglected, then we can restrict our
attention to the triangle diagrams of the type shown in figure A1(b) and A1(c). From
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(B8), we see that we can quickly generalize the momentum-independent and momentum-
dependent parts of the current vertices to the matrix notation by making the following
substitutions:

vF −→ vF ⊗ τ2

m−1
p −→ m−1

p ⊗ 1.
(B12)

With these modifications, we find that results of appendix A may be generalized by writing

3(p, iνn) = 1

2β

∑
ωr

Tr
[
τ2

(
G(+)

p − G(−)
p

)
τ2G(−)

p

]
5(p, ν) = 1

4β

∑
ωn

Tr
{
G(+)

p G(−)
p τ2

[
G(−)

p − G(+)
p

]
τ2

} (B13)

where we have used the shorthand notationG(±)
p ≡ G(p, iωr ± iνn/2). These expressions

revert to those given in appendix A when0a = 0b. A simple diagrammatic interpretation
of both expressions can be made by noting thatτ2 is off-diagonal in the Majorana basis.
The electric current operator is off-diagonal in this basis, and the fermion bubble entering
into the conductivity contains one ‘a’- and one ‘b’-propagator, as shown in figure A2(a).
By contrast, the Hall conductivity involves the effective-mass operator, which is diagonal
in the ‘a–b’ basis. The triangle diagrams entering into the Hall conductivity are shown in
figure A2(b).

Replacing the momentum sums by an energy integral, we can repeat the steps of
appendix A, to find∑

p

(vx
pF

)23(p, iνn) = nνn

m

1

0+ + νn∑
p

(vx
pF

)25(p, iνn) = n

m

iνn

(0f + νn)(0s + νn)

(B14)

where0+ = 1
2(0f + 0s) and we have takenνn > 0. The results are then

σxx(ν) = ne2

m

1

0+ − iν

σxy(ν) = ne2

m

ωc

(0f − iν)(0s − iν)
.

(B15)

These are the same results as obtained from the phenomenological Boltzmann approach.
The shrewd diagrammatician will of course recognize that we have been too cavalier.

By introducing terms into the scattering self-energies that do not commute with the charge
operator (which isτ2 in this basis), we have broken gauge invariance. In the bubble
diagrams, the order of propagators and the charge operator is inverted, so these diagrams
no longer give the same contributions as their triangular counterparts. A more careful
calculation, which includes the bubble diagrams, leads to the following result:

σxy = 1

2
(σM + σ◦)∇ × A + 1

2
(σM − σ◦)∇ · A (B16)

where

σM(ν) = ne3

m2

1

(0f − iν)(0s − iν)

σ◦(ν) = ne3

m2

1

(0+ − iν)2

(B17)
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are the contributions from the triangle and bubble diagrams, respectively. The second term in
equation (B16) reflects the limitations of this kind of phenomenology. In a more consistent
calculation, the second term in equation (B16) would presumably enter in combination with
the gradient of the phase of the anomalous scattering vertex. Were we to regard the first
term in equation (B16) as the physically relevant component, then theb-quasiparticle would
still selectively short circuitσxy , but the Hall angle would be reduced by a factor of two
relative to the Boltzmann equation approach.

= aeva

e

xyσ     (ω)

αβ

=
αβ

 −2ιω

=

ε   

-x x xx
xxσ      (ω) =

 −ιω
1

[         ]
αβ

xβ

-1

xβ

m

(a)

(b)

ωy y

α α

−

ω
ωω

Figure A2. The diagrams contributing to (a) the conductivity and (b) the Hall conductivity in
terms of Majorana fermions. (There are also a set of diagrams with the two Majorana parities
interchanged.) In the electrical conductivity both species contribute equallyin each diagram
and the fast relaxation rate will dominate. By contrast, in the Hall conductivity there is an
asymmetrybetween the numbers of each species of Majorana contributing to a given diagram.
While the symmetry is restored by adding the diagrams with the parities interchanged, adding
the diagrams is equivalent to adding conductivities and allows the long-lived species to ‘short
circuit’ the rapidly decaying one in the Hall current.

Appendix C. Derivation of the transport equation

The Boltzmann equation for charge-conjugation eigenstates is determined from the semi-
classical limit of the quantum Boltzmann equation. The derivation of the quantum
Boltzmann equation (QBE) has been reviewed by Rammer and Smith [36] and we will
rely heavily on their results. We proceed by deriving the QBE for electrons and their
degenerate hole states as described by Rammer and Smith but, since our collision term will
ultimately couple these two states, we group them together in a matrix. The perturbations
that drive the Fermi system out of equilibrium—EM fields and temperature gradients etc—
couple to electrons and holes directly and independently. Interactions in a conventional
metal also preserve the electron or hole nature of the quasiparticles with the net result that
the QBE is diagonal in the particle–hole basis and one solves for a single scalar distribution
function. We wish to generalize this to the situation where the driving perturbations remain
diagonal in the particle–hole basis but the interaction terms are diagonal only in the basis
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of charge-conjugation eigenstates. To do this we will begin by deriving the driving terms
in the QBE in the particle–hole basis by considering the collisionless system. We shall
be careful though to make no assumption of commutivity since ultimately the collision
term which we introduce will not be diagonal in this basis. Having obtained the driving
terms we then rotate the equation into the basis of charge-conjugation eigenstates where our
phenomenological collision term is diagonal. This will then give our new transport equation
from which we can obtain the conductivities.

The QBE is usually obtained from the equation of motion of the ‘Keldysh’ Green’s
function. We therefore consider the time evolution of the following matrix Green’s function
expressed in terms of particles and holes:

GK(x1, x1′) ≡ GK
ij (x1, x1′) = −i

〈[
9

†
i (x1), 9j (x1′)

]
−

〉
. (C1)

Here x1 is shorthand for the 4-coordinate(t1, r1). We deal first with the driving term in
the QBE for which we need only consider the collisionless regime. Here the difference
between the equation of motion acting on the left and right operators inGK may be written
as [

δ(x1 − x1′)(i ∂t1 − ε(−i∇r1))1 ⊗, GK
]
− = 0 (C2)

where⊗ is the convolution operator in real space. This equation is now coarse grained in
the presence of an EM field by introducing the mixed representation

G(X, p) =
∫

dx e−ir·[p+eA(X)1]+it [E+eϕ(X)]1G(X, x) (C3)

whereX is the centre-of-mass coordinateX = (x1 + x1′)/2 and we Fourier transform over
the relative positionx = x1 − x1′ . To correctly transform the degenerate particle and hole
states, the momentump becomes a diagonal matrix

p =
(

p 0
0 −p∗

)
. (C4)

This transformation has the combined effect of coupling the system in a gauge-invariant
manner to the electromagnetic fieldA = (ϕ, A) and expressing everything in terms of
the kinematic momentum. Under conditions of uniform, static electromagnetic fields the
convolution operator can be written in the mixed representation using the gradient expansion

G ⊗ H = exp

(
i

2
(∂G

X · ∂H
p − ∂G

p · ∂H
X + ∂G

p · F · ∂H
p )

)
G(X, p)H(X, p) (C5)

where∂G
p denotes the derivative operator(∂E, ∇) that acts exclusively onG, andF is the

usual antisymmetric EM field tensor∂µAν − ∂νA
µ.

To obtain the classical limit of the QBE we simply apply the gradient expansion
to first order to the equation of motion forGK . We now make the usual quasiparticle
assumption [37, 38] thatGK is sharply peaked in energy∼δ(ω−ε(k)) and we integrate the
equation of motion over frequency. This leads then to the collisionless Boltzmann equation

1

2

{(
Hp 0
0 Hp∗

)
, GK(T , R, p)

}
+

= 0 (C6)

where, withvp = ∇pε(p), we define

Hp = ∂T + vp · ∇R + e(E + vp × B) · ∇p. (C7)

We display the equations at this point to emphasize the fact that we have merely derived
the conventional collisionless Boltzmann equation: the anticommutator here is trivial and
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we have two independent Boltzmann equations. However, we now wish to express the
above equation in terms of the charge-conjugation eigenstates since our hypothesis for the
scattering distinguishes between them. We apply the unitary transformation of equation (B5)
to rotate our transport equation into the basis of charge-conjugation eigenstates:

ḟ + 1

2

{Vp, ∇Rf
}

+ + e

2

{
(E + Vp × B)τ 2, ∇pf

}
+ = I[g] (C8)

where

f(T , R, p) =
∫

dω U−1GKU =
∫

dω
〈[

9̃†
p9̃p

]
−

〉
(C9)

Vp = 1

2
(vp + vp∗)1 + 1

2
(vp − vp∗)τ 2. (C10)

We have now added a collision integral, I[g], which is a functional of the departure from
equilibrium,g = f−f(0). Our central hypothesis is now contained in this collision functional:
the return to equilibrium is governed by two independent relaxation times—one for each of
the charge-conjugation eigenstates:

I[g] = 1

2
{Γ, g}+ = 1

2

{(
0f 0
0 0s

)
, g

}
+

. (C11)

Writing Γ = 0+1 + 0−τ 3 we stress again that if0− = (0f − 0s)/2 = 0 our transport
equation is simply the usual relaxation time approximation used in textbook treatments.
The consequences of0− 6= 0 are established in this paper.
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